Велосипедист проехал полпути со скоростью 20км/ч , а остаток пути прошел пешком.Какова была скорость его ходьбы, если ехал он 1/5 часть всего времени?
Обозначим:
— S — общее расстояние.
— t — общее время в пути.
— t1 — время, затраченное на велосипед (1/5 от общего времени).
— t2 — время, затраченное на пешую прогулку.
Шаг 1: Найдем время на велосипеде.
Время на велосипеде:
t1 = 1/5 t.
Соответственно, время, затраченное на пешую прогулку:
t2 = t — t1 = t — 1/5 t = 4/5 t.
Шаг 2: Определим расстояния.
Полпути (с расстоянием S/2) велосипедист проехал со скоростью 20 км/ч. Используем формулу для расстояния:
S1 = v * t1,
где S1 — расстояние, пройденное на велосипеде.
Подставим значения:
S/2 = 20 * t1.
Шаг 3: Подставим значение времени.
Так как t1 = 1/5 t, то:
S/2 = 20 * (1/5 t).
S/2 = 4t.
Таким образом:
S = 8t.
Шаг 4: Найдем скорость ходьбы.
Теперь найдем расстояние, пройденное пешком:
S2 = S — S1 = S — S/2 = S/2.
S2 = 8t / 2 = 4t.
Скорость ходьбы v2 можно найти по формуле:
v2 = S2 / t2.
Подставим значения:
v2 = 4t / (4/5 t).
v2 = 4t * (5/4) / t = 5 км/ч.
Таким образом, скорость его ходьбы составила 5 км/ч.