В треугольнике ABC AB =BC, внешний угол при вершине B равен 104∘. Найдите ∠A. Ответ дайте в градусах.

В треугольнике ABC, где AB = BC, угол B является внешним углом и равен 104°.

Согласно свойству внешнего угла, он равен сумме внутренних углов, не смежных с ним:

∠B (внешний угол) = ∠A + ∠C.

Поскольку треугольник равнобедренный (AB = BC), углы ∠A и ∠C равны, обозначим их как ∠A = ∠C = x.

Тогда:

104° = x + x = 2x.

Решим уравнение:

2x = 104°
x = 52°.

Таким образом, угол ∠A равен 52°.

Ответ:
∠A = 52°.